SOLUTION OF A NONSTEADY TRANSPORT PROBLEM
BY THE FLUX METHOD

I. M, Beskrovayi UDC 533.70

A system of flux equations is proposed that is completely equivalent to the P, approximation,
and has a more rigorous solution fo the nonsteady transport problem than does the diffusion
equation, An example using the proposed method is presented.

It is known that the one-velocity Boltzmann equation has an exact solution only for an infinite medium,
and can be solved for a semiinfinite medium (the Milne problem) [1]. For a bounded medium, a solution
can be obtained by expanding in an infinite series of Legendre polynomials, Limiting ourselves to the first
two terms of the expansion, we obtain the equation of the so-called P, approximation [2]:
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From (1) and (2), by simple transformations, we can obtain a single equation for the total concentration:
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where D* =vI/3 is the diffusion constant; T is the lifetime; v is the mean thermal velocity; I is the mean
free path for an interaction, where
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1, is the mean free path for absorption; /5 is the mean free path for scattering; and S is a source function,
Introducing the simplifying assumptions
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we obtain the well-known diffusion equation [3]
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where
Dy=2e, Ny=15,

which is also commonly used for the solution of all transport problems in bounded media, including non-
steady problems [4]. Since we neglect the second time derivative, the diffusion equation becomes an equa-
tion of long-range interaction,
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As a result of this situation, in order to solve nonsteady prob-

p . lems it turns out that the formation of a concentration discontinuity

/- in the diffusion particles at some point on the x axis leads to a simul-
taneous formation of a certain concentration value at every point of the
2 . axis being considered, Furthermore, the results obtained by taking

4 - account of the action of a transient perturbation (a 8 pulse) diverge
for t—0,

Meanwhile, there has been no need to introduce the simplifica-
tions (4). We show that from Egs. (1) and (2) we can obtain the flux
equations, which not only have the convenience of the diffusion equation
(5), but also are considerably more flexible in the introduction of
various boundary conditions,
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Fig.1, Fluxdiagram inaplane
layer for t = 0, We introduce the fluxes j, and j_, moving in the positive and ne-
gative directions along the x axis [5]:
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From (1) and (2), taking account of (6) and (7), we now obtain
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For the problem with zero initial conditions, we can, using the Laplace transformation, write Egs, (8) and
(9) in the form
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where s is the Laplace operator, Finally, Eqs, (10) and (11), in terms of the flux method, can be represented
as
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The system of equations (12)-(13) has the general solution
jo (%, 8) = A(S) R (s) €xp g (s) ] 4 B (s) exp [— g (5) x], (15)
j-(x, s) = A(s)explg(s) x] + B (5) Rw (s) exp[~—q (5) 1, (16)

where

q(s) = V?’_]/(s+-[i—)(s+—’l’t—), (17)
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A(s) and B(s) are integration constantdetermined from the boundary conditions *

We consider an example of solving the nonsteady problem by using Eqgs, (15) and (16), We assume that on
the right boundary of a layer of arbitrary thickness w (Fig.1) there occurs a discontinuity in concentration
Ny such that
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s
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If the region to the left of the layer being considered is assumed to be nonreflecting, then in this case the
boundary conditions are of the form

j+ (, §) = 0, (20)
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From (16) and 21) we obtain
B(s) = — A(5) R« (). (22)

Equation (23) follows from (15), (16}, and (21):
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Then the transform of the flux emerging from the layer will be of the form
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Using the notation given above, and carrying out simple transformations, we finally obtain
.ua9=N5”$) 1 (25)
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Obtaining the inverse transform of the transform (25) is difficult in general; however, for certain limiting
cages, it becomes rather simple, Since for s —«
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the initial behavior of the flux emerging from the layer can be described by the equations
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From (25) we can also easily determine the steady-state value
m%g
lim J_ (0, tee = HmJ_(0, §)sksw = . (29)

Shgqw + %l—Ch qw
In order to analyze the final stage of the transient process and to determine the time for it to be established,

we can use the following approximations, As usual, we can assume that v/I > s; we then have

*The flux equations for the steady-state case were first obtained by Shockley [6].
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From (31) and (32) it is easy to establish that for I, > 7 and s — 0 we have
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Taking account of all these simplifications, we can write Eq, (25) in the form
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The inverse transform of (34) can easily be obtained for the limiting cases of small and large thickness w.
If q(s)w « 1, then

*
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(39)

For large thickness, when q(s)w > 1, Eq. (34) implies
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Thus the flux method enables us to determine the initial and steady-state values of the flux emerging
from a layer of finite thickness and also to describe the process of its establishment.
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